2 research outputs found

    A finite-volume module for simulating global all-scale atmospheric flows

    Get PDF
    The paper documents the development of a global nonhydrostatic finite-volume module designed to enhance an established spectral-transform based numerical weather prediction (NWP) model. The module adheres to NWP standards, with formulation of the governing equations based on the classical meteorological latitude-longitude spherical framework. In the horizontal, a bespoke unstructured mesh with finite-volumes built about the reduced Gaussian grid of the existing NWP model circumvents the notorious stiffness in the polar regions of the spherical framework. All dependent variables are co-located, accommodating both spectral-transform and grid-point solutions at the same physical locations. In the vertical, a uniform finite-difference discretisation facilitates the solution of intricate elliptic problems in thin spherical shells, while the pliancy of the physical vertical coordinate is delegated to generalised continuous transformations between computational and physical space. The newly developed module assumes the compressible Euler equations as default, but includes reduced soundproof PDEs as an option. Furthermore, it employs semi-implicit forward-in-time integrators of the governing PDE systems, akin to but more general than those used in the NWP model. The module shares the equal regions parallelisation scheme with the NWP model, with multiple layers of parallelism hybridising MPI tasks and OpenMP threads. The efficacy of the developed nonhydrostatic module is illustrated with benchmarks of idealised global weather

    FVM 1.0: a nonhydrostatic finite-volume dynamical core formulation for IFS

    No full text
    We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF, and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretisation with a local communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalised height-based vertical coordinate, applicable on flexible meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude-latitude coordinates, and physical parametrisations, thereby facilitating their comparison, coexistence and combination in IFS. We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of the novel IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parametrisation by means of a generic interface. These developments - including a new horizontal-vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient coding implementation - provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS
    corecore